Marker-assisted selection to increase effective population size by reducing Mendelian segregation variance.

نویسندگان

  • J Wang
  • W G Hill
چکیده

Using both the genetic drift and inbreeding approaches, we derive more general equations for effective size (N(e)) of a diploid species under random mating. These equations show explicitly that inbreeding or genetic drift comes from two sources, the variation in the number of offspring from each parent and the variation in contribution between these parents' own paternally and maternally derived genes to their offspring. The first source can be easily and effectively controlled by choosing an equal number of offspring from each family, while the second can be manipulated by using information on genetic markers to reduce the variance due to Mendelian segregation. Marker-assisted selection (MAS) methods to increase N(e) for the whole genome with single or multiple marker loci per chromosome, different numbers of males, and females are developed and implemented in stochastic simulations. The analytical and simulation results show that, although in principle N(e) can be increased indefinitely, the efficiency of MAS is restricted in practice by the amount of marker information, the genome size, and the number of marker-genotyped offspring per family. The assumptions made in developing the theory and methods and the applications of MAS in conservation are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on Factors Affecting the Efficiency of Marker-assisted Introgression

In this paper we simulate the breeding process of marker-assisted introgressing a favorable QTL allele from “donor” to “recipient”. During this process, the foreground selection and background selection were made for introgression population simultaneously: foreground selection is making indirect selection of target gene by its closely linked two flanking markers, four selection methods includi...

متن کامل

Marker assisted selection for the improvement of Sarjoo-52 for drought tolerance by introgression of MQTL1.1 from the source Nagina–22

Literatures have reported that a lot of drought related genes were cloned and individual gene showed positive effects under controlled stress experiments, but were not much effective in the field. Although, the progresses by conventional breeding approaches were achievable as some drought varieties have been released to the farmers in the recent years but this is not adequate to cope up with th...

متن کامل

Optimal marker-assisted selection to increase the effective size of small populations.

An approach to the optimal utilization of marker and pedigree information in minimizing the rates of inbreeding and genetic drift at the average locus of the genome (not just the marked loci) in a small diploid population is proposed, and its efficiency is investigated by stochastic simulations. The approach is based on estimating the expected pedigree of each chromosome by using marker and ind...

متن کامل

Effective size of a fluctuating age-structured population.

Previous theories on the effective size of age-structured populations assumed a constant environment and, usually, a constant population size and age structure. We derive formulas for the variance effective size of populations subject to fluctuations in age structure and total population size produced by a combination of demographic and environmental stochasticity. Haploid and monoecious or dio...

متن کامل

The Pattern of Linkage Disequilibrium in Livestock Genome

Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 154 1  شماره 

صفحات  -

تاریخ انتشار 2000